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Abstract

The Aotearoa / New Zealand pīwakawaka / fantail, Rhipidura fuliginosa (Sparrman, 1787), Rhipiduridae, is an iconic 
species and conspicuous in a range of habitats. However, island populations of the species are said to fluctuate 
dramatically. This project set out to investigate the population dynamics of Te Ika a Māui / North Island subspecies 
Rhipidura fuliginosa placabilis Bangs, 1921 on Tiritiri Matangi Island using a volunteer-based monitoring scheme. To 
achieve this goal, we developed a pilot sampling grid and determined spatial-distribution characteristics using several 
approaches, including geostatistical tools in ArcMap, species distribution modelling (SDM) and occupancy modelling. 
Fantail presence data was recorded twice a year by volunteers assigned to specific grids at different seasons for 
two years on Tiritiri Matangi Island. Recorded count data shows distinctive differences between the sampling periods 
and different areas of the island. Significant hotspots, as well as clustering of abundance, show different patterns, 
with significantly higher abundance and widespread distribution during May compared to November. Spatial analysis 
identified vegetation, particularly replanted areas, as influencing the fantail counts. Results of SDM show areas of the 
island suitable for the species, and occupancy models further describe the seasonal spatial characteristics of fantail. 
The effort also highlights the importance of volunteers in providing bird-count data to generate the knowledge base 
required for the management of an island sanctuary.
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Introduction

The use of GIS with a combination of tools used for 
processing data gathered by volunteers is recognised 
as an efficient and economical method to monitor and 
characterise bird populations, given the area covered, 
the seasonality of the observations and the nature of 
bird-count reporting itself (Hadidan et al. 1997; Turner 
2003; Miller et al. 2016). Bird surveys have a long history 
of involving volunteers in data gathering, with such 
efforts proven to be useful for describing aspects of bird 
migration (Baillie et al. 2006). The increasing availability 
of online resources such as apps and websites for 
citizen-science bird-data reporting, and the importance 
of data-collection methods being based on scientific 
approaches is recognised (Scofield et al. 2012). 

The Aotearoa / New Zealand pīwakawaka / 

fantail 
The Aotearoa / New Zealand pīwakawaka / fantail, 
Rhipidura fuliginosa (Sparrman, 1787), is the only 
resident representative of the family Rhipiduridae in 
the Aotearoa / New Zealand archipelago (Powlesland 
2013). It is widely distributed throughout Aotearoa / 
New Zealand, with four subspecies recognised: North 
Island fantail, R. fuliginosa placabilis Bangs, 1921; South 
Island fantail, R. fuliginosa fuliginosa (Sparrman, 1787); 
Chatham Island fantail, R. fuliginosa penita Bangs, 1911, 
and the extinct Lord Howe Island fantail, R. fuliginosa 
cervina Ramsay, 1879. The fantail utilises a wide variety 
of habitats including old growth or native and plantation 
forests, scrub, farmland, gardens, orchards, parks and 
grassland. In small islands, local populations of fantail 
can reduce or disappear during the rainy and cold 

seasons (Powlesland 2013), indicating a need for close 
monitoring and regular observation. This is particularly 
important in designated reserves or parks, where the 
promotion of biodiversity conservation to visitors, 
supporters and the public requires the visible presence 
and significant abundance of the species.

This study was focused on Tiritiri Matangi Island, 
an island sanctuary located 3.5 km distant from 
Whangaparāoa Peninsula, Tīkapa Moana / Hauraki Gulf, 
Te Ika a Māui / North Island, Aotearoa / New Zealand 
(Figure 1). Operating since 1984, and designated as an 
open sanctuary where tourism is promoted to the public, 
Tiritiri Matangi meets the need for the conservation of 
endemic and iconic species while providing a venue to 
enhance public awareness (Galbraith & Cooper 2013; 
Fergus et al. 2013). The presence of the facility has 
translated to motivated volunteers providing the much-
needed data requirements for studies, including bird 
counts and species surveys. Through the Supporters of 
Tiritiri Matangi (SoTM), the involvement of volunteers in 
the scientific monitoring of bird species of the island 
is well recognised and acknowledged as a unique 
endeavour supporting science-based conservation 
management (Galbraith 2013). This unique island public 
/ scientific sanctuary setup allows the provision of long-
term monitoring data on a continuous basis for many 
endangered species (Thorogood et al. 2013). Studies 
conducted on Tiritiri Matangi have resulted in increased 
knowledge of the effects of rat eradication on bird 
populations (Veitch 2002), translocations of endangered 
species (van Winkel et al. 2010; Graham et al. 2013), 
monitoring of bird populations (Parker 2008), species 
translocations (Parker & Laurence 2008) and ecological 
restoration (Galbraith & Cooper 2013). 



Perspectives in Biodiversity  Volume 2 / Issue 1 / 2024  24  

MONITORING OF NORTH ISLAND FANTAIL

Figure 1. Sampling grid for fantail monitoring at Tiritiri Matangi Island.
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To provide further support for the conservation 
management of the sanctuary, an effort to institute 
a spatial modelling system for monitoring changes in 
species present on the island started in 2014. The pilot 
to this study was the North Island fantail (Rhipidura 
fuliginosa placabilis) – hereafter referred to as ‘fantail’. 
At the onset of the study, volunteers conducted bird 
counts, then a geodatabase for data gathering was 
established, and modelling approaches for describing 
the relationships and interaction amongst the species 
and the island’s environment were investigated. 

Geospatial species monitoring
The variety of available tools and software in spatial 
modelling provides choice, flexibility and the ability to 
address the multitude of questions related to species 
biogeography, and reflects the attempt to provide 
answers, even if incomplete, to those questions in 
view of the prerequisites of conservation management 
(Araújo & Peterson 2012; Costanza & Voinov 2004). 
The available tools and approaches, however, require 
significant investment in modelling and tool-performance 
evaluation to determine which are the most relevant 
and effective for the given problem and the study’s 
objectives. Some tools with default values may not be 
applicable when applied to a different data set, or in 
different environmental conditions. Misleading results 
may also occur when species data and environmental 
variables are not adequately considered, and applied 
without addressing inherent biases (Villero et al. 2017; 
Banerjee et al. 2014). This results in sometimes complex 
and misleading models, which in turn leads to limited 
use of modelling in conservation planning (Jiménez-
Valverde 2012). A combined approach using the most 
appropriate and widely used tools is recommended as 
one of the best ways to address weaknesses inherent 
not only in individual tools but also in the wider category 
of spatial modelling and statistical systems, to provide 
acceptable results at various stages of analysis and 
modelling (Aguilar et al. 2015; Mazzolli et al. 2016). We 
used a combination of spatial analytical tools available in 
the ArcMap v10.5 GIS software, SDM using the Maxent 
algorithm and occupancy modelling, for characterising 
fantail distribution on an island sanctuary.

To implement a systematic collection of data, a 
hexagonal grid-based system allocating specific areas 
for volunteers to cover was implemented to address 
location-based bias in recorded counts (Wiest et al. 
2016; Berkunsky et al. 2016). With the entire island 
covered, the hexagonal grid provides efficiency in data 

collection over time, convenience in assigning volunteers 
to record data, and maintaining the geodatabase while 
allowing for consistency in using the many different tools 
involved. The grid-based system also addresses spatial 
autocorrelation biases associated with non-grid data. In 
addition, the grid setup provides consistency for a long-
term monitoring system not only of the fantails, but of 
other birds and important species on the island, while 
providing relevant data on environmental variables that 
may affect species distribution characteristics.

SDM has become widely used to predict the 
suitability of a geographical area for a certain species, 
with many different algorithms developed, tested and 
compared (Fourcade et al. 2014; Elith & Graham 2009). 
Notable contributions of SDM include the identification 
of areas for further surveys of populations and species 
(Pearson et al. 2007; Araújo & Guisan 2006), description 
of invasive species ranges and potential for invasion 
(Ficetola et al. 2007; Roura-Pascual et al. 2008; 
McDowell et al. 2014), and effects of climate change 
on species distribution (Milanovich et al. 2010) and 
endangered species (Matyukhina et al. 2014). 

Occupancy modelling has found popular use in 
developing models estimating occupancy and detection 
of a species over single or multiple seasons (MacKenzie 
et al. 2003; Zeller et al. 2011). While SDM produces the 
probability of a geographical location to be suitable for a 
species, occupancy modelling estimates the probability 
of an area to be occupied by and/or detected with a 
target species. Multiple season models could be 
produced, with estimates of colonisation and extinction 
also made available (MacKenzie et al. 2003). Occupancy 
modelling has been used to describe monitoring data 
of birds in Switzerland (Kéry et al. 2010), grassland 
birds (Sliwinski et al. 2016), aquatic snakes in North 
America (Durso et al. 2011), macaws (Psittacidae) in 
Bolivia (Berkunsky et al. 2016), jaguars (Panthera onca 
(Linnaeus, 1758)) in Mexico (Petracca et al. 2014) and 
mammals in Africa (Rich et al. 2016). Hexagonal grids and 
occupancy modelling were used in identifying population 
trends in threatened parrots (Berkunsky et al. 2016). 
Efforts to compare and evaluate SDM and occupancy 
modelling approaches report varying performance 
and applicability based on species detectability 
characteristics, with occupancy models showing better 
performance for species with low detectability and 
SDM performing better with highly detectable species 
(Comte & Grenouillet 2013). We implemented these 
modelling approaches to accommodate the consistent 
influx of data for fantails and other species monitored 
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at the island. Using multiple approaches also considers 
the finding that the mean differences in performance 
between consensus SDM and occupancy modelling was 
found to be relative minor (Comte & Grenouillet, 2013).

In this paper we set out to implement a grid-
based monitoring system with data collection involving 
volunteers, to determine the spatial characteristics of 
an iconic species, determine the relationship between 
species occurrence and selected environmental 
variables, and provide a framework for a long-term 
monitoring system of the island’s important species.

Methods

Tiritiri Matangi Island is located 3.5 km east of the 
Whangaparāoa Peninsula, Te Ika a Māui / North 
Island, Aotearoa / New Zealand. The island has a 
slightly elongated shape, with an area of 220 hectares 
orientated northwest to southeast, measuring 3.5 km 
along its length and 1 km wide. Taking into consideration 
the capability of project participants to detect fantail 
presence, the island was subdivided into 99 hexagonal 
grids, each with a radius of 50 m (Figure 1). Fantail 
counts were carried out in November and May from 
2014 to 2016, which were the months when differences 
in abundance and sightings had been noted over 
the years. Volunteers were assigned to monitor 3–4 
grids each during sampling days and record detected 
presence of fantails for each grid. Each count consisted 
of three 5-minute counts (Hartley 2012) replicated over 
two days. Bird counts were entered into a geodatabase 
in ArcMap 10.5, and maps depicting average abundance 
for each sampling month were produced to show 
distribution characteristics.

Environmental parameters used for modelling 
included elevation, slope, aspect, vegetation and 
tracks. The 1-metre resolution Auckland LIDAR data 
was downloaded (https://data.linz.govt.nz/layer/3405-
auckland-lidar-1m-dem-2013/) and used as the basis for 
generating elevation, slope and aspect raster datasets 
using the tools available in ArcMap. The vegetation 
type derived from the Landcover Database (LCDB4.1: 
https://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-
cover-database-version-41-mainland-new-zealand/) for 
each of the grid cells was identified and used as an 
environmental variable. The numerous tracks on the 
island were included as an environmental variable, with 
buffered distances providing values for the raster layer. 

Using the average count overall, the global Moran’s I 

statistic (Mitchell 2005) was used to examine underlying 
spatial autocorrelation patterns to identify whether the 
data itself was clustered (positively significant), randomly 
distributed, or dispersed (negatively significant). While 
the global Moran’s I statistic indicated clustering, 
it did not identify where that occurred. Such specific 
location of hotspots was determined by the Getis-Ord 
Gi* statistic (Getis & Ord 1992), with the distance band 
results from the Moran’s I statistic. The Getis-Ord Gi* 
statistic identified the group of neighbouring hexagonal 
grids where bird-count values hotspots or coldspots 
were clustered (using the Z scores and p-values of 
95% confidence levels [CI] +1.96 and −1.96 standard 
deviations). Hotspots depicted locations where there 
were higher concentrations of fantails as compared to 
surrounding areas, whereas coldspots indicated the 
opposite (Ord & Getis 1995; 2001). The Gi* statistic 
is widely used in ecology and species distributions 
(Rozylowicz et al. 2013; Rissler & Smith 2010; Shaker et 
al. 2010), diseases (Kao et al. 2010), historical analysis 
(Zhang et al. 2011), avian influenza (Bevins et al. 2014), 
roadkill (Seo et al. 2015) and stray-cat (Felis catus 
Linnaeus, 1758) distribution (Aguilar & Farnworth 2013). 

Another geostatistical tool used to characterise 
clusters and statistically significant spatial outliers is 
Anselin’s Local Moran’s Index (I-value) (Anselin 1995). 
This statistic determines similarities or dissimilarities 
of a cell with the surrounding cells. Using inverse 
weighted distance squared and the Euclidean distance 
measurement in the analysis, groupings of positive 
I-values with significant z-scores provide evidence 
of clustering, while groupings of negative I-values 
provide an argument for a lack of clustering. The 
hexagonal shape allows six significant positive indices 
in proximity as evidence of clustering, similar to the 
work of Schuurman et al. (2009). In this study, to 
further characterise results of Anselin’s Local Moran’s 
I, areas with statistically significant indices (p-value 
<0.05) were classified using local and global mean 
averages (local mean was the average fantail count 
density based on the area’s neighborhood). Results 
were presented as cluster/outlier types (COType) that 
included the types HH, LL, HL and LH. The classification 
of statistically significant HH indicates clusters of high 
value while LL are statistically significant clusters of low 
value. For statistically significant outliers, HL is a high 
value surrounded by low values and LH is a low value 
surrounded by high values (Mitchell 2005). 

The ordinary least squares (OLS) tool was used to 
determine the relationship between fantail abundance 
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and the explanatory variables, including vegetation, 
tracks or roads, aspect, slope and elevation. OLS as 
implemented in ArcMap produces statistical measures 
used to evaluate the results of the analysis (Năpăruş & 
Kuntner 2012; Mitchell 2005). To compare the robustness 
of the OLS model results and provide an alternative 
spatially related analysis, geographically weighted 
regression (GWR) was utilised to take advantage of its 
capability of providing local r2, local standard errors, 
and measures of significance that provide an indication 
of spatial influences between variables (Legendre 1993; 
Brunsdon et al. 2002). The Akaike information criterion 
(AIC) was then used to compare the performance of OLS 
and GWR, with lesser values of 3 or greater indicating 
better performance (Zhang et al. 2011; Fotheringham et 
al. 1997).

To determine the suitability of the island for the 
fantail based on several environmental variables, SDM 
using the tool Maxent was conducted (Phillips et al. 
2006; Phillips & Dudík 2008). In other studies, Maxent 
has been used to assess the spatial distribution of 
the lesser prairie chicken (Jarnevich et al. 2016), the 
distribution of beach-nesting birds (Maslo et al. 2016) 
and the fatality risk of bats near wind farms (Santos et 
al. 2013). In this study, the occurrence input for Maxent 
consisted of presence or absence based on the mean 
of counts and located at the centroid of each hexagon. 
The same environmental variables used in geostatistical 
analysis and occupancy modelling were also used, 
consistent with the observation that selected variables 
with observed species-specific responses improve 
model outputs (Molloy et al. 2016). Prediction maps for 
each of the sampling periods and the overall counts 
were generated using standardised regularisation and 
cross-validation for generating the goodness-of-fit 
measures. Different values of regularisation were tested 
to determine the best-performing model, as determined 
by the area under the curve (AUC) (Merow et al. 2013). 
Cross validation with five replicates was used for 
model evaluation, to measure the range of the model’s 
predictive ability.

Occupancy modelling detects the probability of 
occupancy (psi), defined as the probability that a 
sampling unit is occupied by a species, and detectability 
(p), which is the probability that at least one individual 
of a species will be detected. Since first described 
in MacKenzie et al. (2002), it has been extended and 
used for a wide variety of applications and species. 
One of these extensions is the ability to model multi-
year data and estimate, aside from occupancy (psi) and 

detectability (p), the component of changes in species 
distribution, including colonisation (gamma), extinction 
(epsilon) and rate of occupancy, sometimes called 
growth rates (lambda) (MacKenzie 2006; Royle & Kéry 
2007). We used the software Presence v11.7 (Hines 
2006), based on the work of Royle and Kéry (2007). 
Data consisted of all sampling records (four days in 
November 2014; six days each in May 2015, November 
2015 and May 2016). Site covariates were the same 
variables used in Maxent modelling, with vegetation also 
used as both site and sample covariates. The values of 
the covariates were standardised, using the approach 
of MacKenzie et al. (2006) to reduce the effect of the 
magnitude of the values of the variables. Multi-season 
models were generated and compared according to the 
AIC, with the best-performing model used to provide 
estimates of occupancy and detectability (Peterman et 
al. 2013). 

Applications of both SDM and occupancy modelling 
have been reported for guiding survey efforts on 
salamanders (Peterman et al. 2013), a freshwater 
fish (Albanese et al. 2014), African mammals (Rich et 
al. 2016), anuran populations (Villena at al. 2016) and 
citizen-science-produced data on birds (Higa et al. 2015).

Results

Fantail observations differed significantly between May 
and November, using the average count for two years 
(paired t-test; p-value <0.0000). The month of May 
showed much greater sightings, with only 13.13% of 
grids showing no counts, while November had 74.74% 
showing zero counts. For the overall sightings, the 
highest count was recorded at Grid 20, which is near 
the old-growth forest and covers the junction of the 
main access-road and an old track (Figure 2). The next 
highest was at Grid 67, which is near the wharf, followed 
by Grid 60, on the east coast, just below the centre of 
the island.
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GIS modelling
Global Moran’s I showed that the data was significantly 
clustered, with hotspots present in the overall count 
data (I = 0.162; z = 2.78; p-value = 0.004). When the 
Getis-Ord Gi* statistic was run for May, November and 
overall count data, hotspots with significant values were 
found at different areas of the island. One hotspot for 
November was located on the central eastern side of 
the island, while three hotspots were found for May. 
Two May hotspots were found on the west coast and 
another on the east coast of the island, slightly south 
of the May hotspot. The November northwest hotspot is 
consistent with the area where the highest fantail counts 
were obtained for the month. Significant coldspots were 
found in the May count, one to the south of the northern 
hotspot and another at the open area near the southern 
ridge area of the island and near the lighthouse. The 
overall hotspot and coldspot pattern is remarkably 
similar to the May hotspot, with the disappearance of 
significant hotspots in the central east side, which was a 
hotspot in November (Figure 3). 

Figure 2. Average Aotearoa New / Zealand fantail count for November, May and overall during the survey period.
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In terms of cluster and outlier analysis (CLOA), the 
November count showed significant HH clusters where 
the hotspots are located and one grid with a significant 
HL cluster in the upper northern part. For May, HH 
clusters were found in the same areas with significant 
hotspots, while an LH cluster was found at one grid in 
the upper northeast. The overall CLOA shows similar 
patterns as the May map, with the difference of an LL 
cluster found at the central western part of the island. 

Results of both hotspot and CLOA analysis show 
distinct patterns between the different months, implying 
a change in the spatial and temporal distribution of the 
fantail. Areas of the island that show hotspots also show 
consistent clustering patterns, providing information on 
areas where the species concentrates at certain times 
of the year. 

Geostatistical results using the OLS tool in ArcMap, 
with elevation, distance from tracks, slope, aspect and 
vegetation used as exploratory variables and the average 
count as a dependent variable, showed no significant 
relationships. When GWR was run, the AIC values for 
GWR (393.392) were only very slightly better than OLS 

(393.389), showing no considerable advantage between 
using OLS and GWR as analytical tools. 

Processing LIDAR raster data resulted in the 
elevation, slope and aspect maps shown in Figure 
4. The island is hilly, with a main ridge running at the 
central section and the highest elevations at 81 m. 
Cliffs surround the island, with a few beaches at small 
coves around the island’s perimeter. Gullies run from the 
main central ridge and dissect the island regularly at 
the eastern and western sides. The island is raised from 
the sea, with an average elevation of 41.2 m. Except 
for coastal cliffs, slopes are modest, with a mean slope 
of 19.7%, while flat sections are rare. Vegetation was 
recorded in situ for each of the sampling cells, and 
consisted of old-growth forest (14.1%), dense coastal 
forest (26.3%), replanted forest (27.3%), dense shrub 
(21.2%), flax shrub (5.1%) and grassland (6.1%). Other 
areas outside of the grid consisted of beach or rocky 
areas, and are included in this variable. In terms of 
aspect, 37% of the island faces south, southwest, and 
west, while 31% faces north, northeast and east. 

Figure 3. Hotspot analysis, and cluster and outlier analysis output maps.
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Figure 4. Parameters used for OLS, GWR analysis and species distribution modelling.

Species distribution modelling
The variable contributions were different between May 
and November. In May, tracks had the highest percentage 
contribution, followed by slope and land cover, but 
when permutation importance was considered, slope 
was highest, followed by tracks and land cover (Table 
1). In November, aspect had the highest percentage 
contribution and highest permutation importance, 
followed by land cover. 
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The model’s responses for each variable show similarities 
between the May and November sampling periods (Figure 
5). In terms of the vegetation categorical variable, there 
is a difference in the importance of grassland, replanted 
forest and dense shrubland, where the May sampling 
showed much higher response for grassland compared 
to November. 

Replanted forest and dense shrubland, on the other 
hand, showed greater influence in November than 
grassland. The variables with the highest responses 
provided a hint on what variable to focus on when 
running the occupancy model. 

Table 1. Contributions of the variables reported by Maxent.

Variable May November

Percent contribution Permutation importance Percent contribution Permutation importance

Vegetation 15.4 4.7 51.1 55.9

Aspect 21.0 17.7 30.7 26.8

Slope 20.3 22.8 8.0 10.3

Tracks 35.2 36.2 7.1 2.7

Elevation 8.1 18.6 3.1 4.3
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Figure 5. Response curves for May and November in Maxent (vegetation types: 1 – old-growth forest; 2 – dense coastal 
forest; 3 – replanted forest; 4 – dense shrub; 5 – flax shrub; 6 – grassland; 7 – beach areas).
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The resulting prediction map of suitability shows 
differences between the two sampling periods (Figure 
6). For May, the highly suitable areas coincide with the 
tracks and higher slopes at the northeast side of the 
island, which has more sunlight during these cooling 
months, while for November, the higher suitability sites 
coincide with vegetation and aspect, with the replanted 
forest vegetation type showing more suitable sites. 

MONITORING OF NORTH ISLAND FANTAIL

Occupancy modelling
Naïve occupancy, or the proportion of cells where 
fantails were detected, was 0.63. Using the distinct 
categories of vegetation cover as covariates in the 
occupancy model showed that the model with a variable 
combination of replanted forest, flax shrubland and 
grassland had the highest predictive value, as indicated 
by the AIC, followed by the combination of grassland and 
flax shrubland (Table 2). Models with the sole variables of 
replanted forest areas, followed by grassland, provided 
the highest predictive results, as shown by the values 
of delta AIC (the difference between the model and the 
lowest AIC). The models with the variables of aspect, 
elevation, tracks and slope showed much lower AIC 
compared to the categories in the vegetation cover. Of 
the vegetation categories, old-growth forest showed the 
lowest AIC. 

Values for occupancy are higher in May than in 
November for both seasons, and the same is true of 
detectability (Figure 7). The rate of occupancy (lambda) 
also reflects the characteristic change in occupancy 
between the sampling months. Values of gamma and 
epsilon, representing colonisation and extinction, show 
the differences between May and November. 

Figure 6. Suitability map produced by Maxent.
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Discussion

The results of geostatistical analysis, including the 
Getis Ord Gi* and Local Anselin’s statistics, provide 
significantly defined distribution characteristics 
represented as graduated colours of the hexagonal 
grids. Differences between May and November are 
highlighted by the coldspots/hotspots and the COType 
maps. Grids where these two statistics are significant 
are also consistently in the same neighbourhood for 
each of the seasons, indicating a consistent measure of 
abundance for the area for each season. 

Results of SDM help guide future related studies 
on the relationship of species occurrence and selected 
environmental variables. The resulting suitability maps 
depict conditions that are different between seasons, 
with tracks and slope showing a greater influence in May, 
while vegetation type and aspect are more significant in 
November. These maps can help guide future surveys in 
locating where the birds may be located and help focus 
monitoring efforts. The results on variable influence 
may also help guide occupancy modelling in determining 
which variables to use as covariates.

Occupancy modelling provided a convenient 
measure of the importance of a categorical variable’s 
elements on model results. In this case, the importance 
of the replanted forest, flax shrubland and grassland 
as combined covariates was determined from the AIC 
results (delta AIC <2). This result is also consistent 
with the Maxent results showing the response curve for 
vegetation where these categories contribute the highest 
for both May and November. The values of occupancy for 
the sampling seasons May and November were found to 
be consistent with the results of geostatistical tools in 
ArcMap and the predictive maps produced by Maxent. 
The higher values of occupancy and detectability in May 
compared to November are consistent for the three 
approaches. Colonisation and local extinction rates 
also reflect the changes from the second season to the 
last sampling period. A major advantage of occupancy 
modelling for continued long-term monitoring is 
that observation efforts over the years increase the 
probability of species detection (Kéry et al. 2010).

The combination of these approaches provides 
options in exploring aspects of a volunteer-based 
monitoring system, with the GIS model supplying an 

Figure 7. Occupancy (psi), detectability (p), occupancy rate of change (lambda), colonisation (gamma) and extinction 
(epsilon) for the sampling periods November 2014 (1), May 2015 (2), November 2015 (3) and May 2016 (4). 
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abundance map of the species, SDM providing a map of 
area suitability, and occupancy modelling determining 
the probability of occupancy and detectability for each 
sampling season. The vegetation types of replanted 
forest, flax shrubland and grassland combined show the 
highest AIC compared to the other models. When only 
one variable is used in the model, the replanted forest 
influencing detectability shows the best AIC. This result 
hints at this vegetation type as having higher influence 
on the species detectability compared to other types. 
Future count data is expected to further enhance the 
understanding of the spatial characteristics of this iconic 
bird. This approach is expected to be applied to other 
species on the island, to include an investigation of inter-
specific influences on the occupancy modelling aspect.

Volunteer-based monitoring of a species that 
provides a steady stream of count data allowed trying 
different approaches for characterising the distribution 
characteristics of the Aotearoa / New Zealand fantail. 
The resulting maps, depicting the distribution, results of 
geostatistical analysis and species distribution, provide 
not only material for technical publications but also 
intuitive feedback to the volunteers in the form of maps, 
giving proof of relevant results that provide motivation 
for continued engagement in the effort. Such outputs 
form part of volunteer project-evaluation tools that are 
proven to contribute to sustainable long-term monitoring 
in citizen science projects (Chandler et al. 2017).

The natural extension of this effort is to explore the 
approach with other species of importance on the island. 
Continuous input of data from the biannual bird counts 
is expected to further improve the quality of the models 
developed and provide much clearer descriptions of the 
spatial distribution of the Aotearoa / New Zealand fantail 
and other bird species of importance. Use of other 
capability extensions of occupancy modelling on the 
fantail and other species is certainly warranted.
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